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Hydrodynamics of the Zero-Range Process
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We argue that the coarse-grained dynamics of the zero-range process in the condensa-
tion regime can be described by an extension of the standard hydrodynamic equation
obtained from Eulerian scaling even though the system is not locally stationary. Our
result is supported by Monte Carlo simulations.
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1. INTRODUCTION

The zero-range process (ZRP) was introduced in 1970 by Spitzer(1) as a system
of interacting random walks, where each lattice site k is occupied by nk particles
which hop randomly to other sites. The hopping rates wn depend only on the
number of particles n at the departure site. Under certain conditions on the rates
wn and the particle density (see below) the grand-canonical stationary distribution
is a product measure, i.e. there are no correlations between different sites.(2) An
exact large-scale description of the dynamics has been proved for arbitrary initial
densities in terms of a hydrodynamic equation for the coarse grained particle
density ρ(x, t ′), provided the rates are non-decreasing, i.e., wn+1 ≥ wn∀n.(3,4) In
this so-called attractive case the density satifies the continuity equation

∂t ′ρ + ∂x j(ρ) = 0 (1)
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where j(ρ) is the stationary current in the grand-canonical distribution with
density ρ.

Depending on the choice of rates, in non-attractive systems a rich and rather
varied dynamical and stationary behaviour emerges, for a recent review see
Ref. 5. In particular, the model may admit a condensation phenomenon analo-
gous to Bose-Einstein condensation. In a periodic chain one then finds that, above
a critical density ρc, a finite fraction of all particles in the system accumulate at
a randomly selected site, whereas all other sites have an average density ρc.(6–9)

The late-time dynamics of condensation has been studied in terms of a coars-
ening process.(9,10) For analysis of the early time range Kaupužs et al.(11) have
generalized an equivalent exclusion process for traffic flow.(12) They observed a
metastable regime as a precursor of the coarsening process. The metastable state
with a current above the critical current persists for some finite time range which
depends on the hopping rates.

If valid, the hydrodynamic description (1) would apply to times much later
than this metastable regime. Interestingly, however, the proofs for the hydrody-
namic limit do not work when the condition on the rates wn for condensation
is met. The reason for this failure is not a minor technical issue of the standard
hydrodynamic approach but lack of local stationarity during the coarsening pro-
cess, the early stages of which fall within the hydrodynamic time regime. This
profound violation of one of the most basic assumptions of hydrodynamic theory
in conjunction with the highly discontinuous condensation phenomenon may lead
one to suspect that (1) might not be valid for initial density profiles where some
region of space is above the critical density ρc. It is the aim of this paper to show
that such a view, even though well-motivated, is overly pessimistic. We argue that,
properly interpreted, the hydrodynamic limit (1) is robust and valid also in the
condensation regime. The theoretical analysis of Sec. 3 is supported by Monte
Carlo simulation in Sec. 4.

2. TOTALLY ASYMMETRIC ZERO-RANGE PROCESS

To set the stage for the new ideas in the next section, we now define the
details of our model and review some known results including the hydrodynamic
limit for subcritical densities.

For definiteness we consider here the one-dimensional totally asymmet-
ric zero-range process (TAZRP) with periodic boundary conditions. The one-
dimensional ZRP has attracted particular interest since it can be mapped to an
exclusion process for which double-occupancy of sites is forbidden. The ZRP-
particles are turned into particle clusters between consecutive vacant sites (which
correspond to the sites on which the ZRP is defined). Condensation thus corre-
sponds to phase separation between a macroscopic particle cluster and a disordered
domain which also contains vacant sites. The n-dependence of the hopping rates
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corresponds to a length-dependent rate of detachment of a particle from a clus-
ter of length n. The ZRP has thus served for deriving a quantitative criterion
for the existence of non-equilibrium phase separation(13) in the otherwise not
yet well-understood driven diffusive systems with two conservation laws.(14,15)

Alternatively one can map ZRP-particles onto strings of vacant sites between
consecutive particles (which correspond to the sites on which the ZRP is de-
fined). In this mapping the n-dependence of the hopping rates wn translates into
a distance-dependent hopping rate for exclusion particles as may be expected for
one-dimensional driven motion which is embedded in three-dimensional space.
This could be of importance not only for the understanding of vehicular traffic, but
also for obtaining insight into the dynamics of ribosomes along m-RNA(16) or the
motion of molecular motors along microtubuli.(17) Other fields of application of
the one-dimensional ZRP include experiments on condensation and metastability
in granular media.(18,19)

If ρ ≤ ρc then the grand-canonical stationary product measure has one-site
marginals P∗(n) = Prob[nk = n] given by

P∗(n) = 1

Z
φn

n∏

i=1

w−1
i . (2)

Here the empty product (n = 0) is defined to be 1,

Z =
∞∑

n=0

φn
n∏

i=1

w−1
i (3)

is the local “partition function,” and φ is the fugacity which determines the den-
sity ρ = φ(d/dφ) ln Z (φ). Due to particle conservation the product distribution
defined by (2) is stationary for every φ for which Z exists. In the TAZRP particles
hop with rate wn from site k to site k + 1 on a periodic chain with L sites. This
process satisfies pairwise balance,(20) leading to a macroscopic stationary current

j =
∞∑

n=1

wn P∗(n) = φ. (4)

The convexity of Z ensures that the current is an increasing function of the density.
In the case of condensation the radius φc of convergence of the partition function
is finite, with a critical density ρc < ∞ as φ approaches φc. The product measure
does not exist for densities beyond ρc.

An intuitively convenient starting point for a coarse grained hydrodynamic
description of the dynamics of the TAZRP is the lattice continuity equation

d

dt
ρk(t) = jk−1(t) − jk(t) (5)
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for the expected local density ρk(t) = 〈 nk(t) 〉, starting from some initial distribu-
tion. Here

jk(t) =
∞∑

nk=1

wnk P(nk, t) (6)

is the expected local current with the probability P(nk, t) = 〈 δnk (t),nk 〉 of finding nk

particles on site k at time t . We consider Eulerian scaling where the lattice constant
a (so far implicitly assumed to be unity) is taken to zero and the system is studied
for rescaled time t ′ = ta, i.e., the microscopic time t is taken to infinity such that
the macroscopic time t ′ is fixed. Since we are working with a periodic chain with
L sites we take a = 1/L and correspondingly t = Lt ′. In the hydrodynamic limit
L → ∞ the discrete chain of L sites becomes a continuous ring of circumference 1.

We first consider the subcritical regime where initially ρk < ρc everywhere
on the lattice. In this case one obtains formally ∂t ′ρ(x, t ′) + ∂x j(x, t ′) = 0 by
setting k = x L in the lattice continuity equation and Taylor expanding in 1/L . In
order to arrive at the continuity equation (1) one proves local stationarity which
can be done rigorously for the ZRP and other lattice gas models under fairly
generic circumstances. Local stationarity means that in the local environment of
the point x , i.e., in a large but finite lattice region around the lattice point x = kL ,
the system is found in its stationary state. Physically, it follows from considering
the limit where the microscopic time t → ∞, which allows all nonconserved (fast)
local degrees of freedom to relax to their local stationarity distribution at the local
density ρ (which because of the conservation law is a slow dynamical variable).
The identification of the expected local density ρ(x, t ′) (appearing in (5)) with
the coarse grained density of the ZRP (appearing in (1)) comes from the law of
large numbers and local stationarity ensures that j(x, t ′) is the stationary current
j(ρ(x, t ′)) computed from the product measure; for details see Refs. 4, 21.

The hydrodynamic equation (1) can be solved by writing ∂t ′ρ + ∂ρ j(ρ)∂xρ =
0 and using the method of characteristics. These are the lines x(t ′) = vchart ′

along which the density remains constant. The characteristic velocity is given
by vchar(ρ) = ∂ρ j . One finds smooth segments of the density which, depending on
the initial data, may evolve into shocks. These are density discontinuities where
the density jumps from a value ρleft(xs, t ′) to ρright(xs, t ′) at the shock position
xs . Shocks travel with velocity vs = ( jright − jleft)/(ρright − ρleft). and are stable
if the Lax condition vchar(ρleft) > vs > vchar(ρright) is satisfied. An initial density
discontinuity which does not satisfy the stability condition for shocks evolves
into a rarefaction wave which is a smooth entropy solution of the continuity
equation (1).(4)

On the microscopic scale, a shock is a sharp increase of the local density,
averaged over a finite lattice segment. The shock position has diffusive fluctuations
around its deterministic mean displacement xs(t ′) − xs(t ′

0) = vs(t ′ − t ′
0).(21) The
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microscopic objects corresponding to the characteristics are spatially localized
finite perturbations of the local density which travel with the collective velocity
vcoll = vchar of the lattice gas.(22) These microscopic perturbations are analogous
to kinematic waves(23) appearing in the macroscopic PDE-description of nonequi-
librium many body systems. In view of this correspondence, we shall apply the
intuitively appealing term kinematic wave (in slight abuse of language) also to
travelling microscopic perturbations observable on the lattice scale.

In this way one can compute the macroscopic evolution of an initial density
profile provided that the initial density ρ0(x) is subcritical everywhere. For hopping
rates wn which do not lead to condensation (ρc = ∞) this is not a restriction.
Furthermore, the open system behaves in a way analogous to usual lattice gases
with open boundaries.(24–29) One can compute the evolving density profile from
(1) even if the condition for condensation is met, since the bulk density remains
subcritical at all times.(30)

3. HYDRODYNAMICS IN THE CONDENSATION REGIME

The standard considerations of the previous section fail for ρ0(x) ≥ ρc. For
ρ0(x) > ρc the current cannot be computed from the product measure and already
at ρ0(x) = ρc the interpretation of the characteristics as local perturbations away
from the local density becomes open to doubt. A fluctuation below ρc would surely
travel with collective velocity vcoll = vchar, but the interpretation of a fluctuation
above ρc becomes dubious. In order to argue that nevertheless the continuity
equation (1), properly interpreted, describes the macroscopic time evolution of the
density under Eulerian scaling we now consider a supercritical density segment
ρ0(x) > ρc. The key observation is that local stationary is a sufficient, but not a
necessary condition for (1) to be valid.

To fix ideas we first assume an initial distribution of particles such that
the whole chain has supercritical density ρk > ρc. In a finite system with N
particles the stationary current does not increase beyond φc in the thermodynamic
limit L , N → ∞ with ρ = N/L fixed even though finite-size corrections can be
substantial.(5) Therefore the current-density relation takes the form (Fig. 1)

j =
{

φ for 0 ≤ ρ ≤ ρc

φc for ρ > ρc.
(7)

This behaviour can be rationalized by viewing the site k0 where the condensate is
located in the infinite system as a source of particles which are emitted at constant
rate w∞ onto site k0 + 1. On the other hand, site k0 acts as a sink which absorbs all
particles arriving from site k0 − 1. The condensate site itself contains always an
infinite number of particles, defined such that for every finite L one has N = ρL
particles in the chain. This effectively breaks the ring into an open chain with a
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j
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c
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Fig. 1. Schematic picture of the stationary current density relation in the ZRP with condensation.
Above the critical density the current is constant with jc = φc .

source at the left boundary where particles are injected with rate w∞ and a right
boundary (at L → ∞) where particles are absorbed. In this case one has indeed
j = φc ≡ jc.(24,30)

For densities not too far above ρc, there is an initial metastable regime of
finite duration.(11) After this the system starts to coarsen, i.e., “small” condensates
at finite distance start to evolve such that larger condensates grow at the expense of
smaller condensates. In the asymmetric ZRP the mean distance grows as

√
t ,(9,10)

until eventually only a single very large condensate remains. This condensate
moves on the lattice on time scales L p where p > 1 depends on the details of the
hopping rates.(31) We conclude that on time scales t ′ = Lt the mean separation
between condensates is proportional to

√
L . Hence the local density ρ(x, t ′),

coarse-grained over length segments proportional to L , remains unchanged on the
Eulerian time scale. On the other hand, between the condensates the system has
an average background density ρc and the current has its stationary value j = jc
irrespective of ρ.(9) Therefore ∂x j(ρ) = 0 and (1) is satisfied even though the
system is not stationary, but coarsens.

Furthermore, one expects that kinematic waves travel with critical collective
velocity v∗

coll ≡ vcoll(ρc) between condensates and that they are absorbed into a
condensate when they reach it after a time of order

√
L . Hence the long-time

average collective velocity vanishes, thus allowing for identification of vcoll with
vchar = ∂ρ j = 0 for ρ > ρc.

It remains to investigate the situation where a finite fraction of the chain is
initially subcritical, whereas some neighbouring domain, also of length propor-
tional to L , is supercritical. Inside each domain the dynamics are described by the
previous considerations. In order to investigate the boundary between the domains
we consider first a domain boundary characterized by ρk(0) < ρc for k < k0 and
ρk(0) > ρc for k ≥ k0. We consider two piecewise constant density profiles with
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ρleft (ρright) as the density of the subcritical (supercritical) domain. Without loss of
generality we set k0 = 0. Hence the two domains are connected by a density jump
which on the macroscopic scale corresponds to a shock. In the supercritical domain
k > 0 one expects at Eulerian time scale a series of small condensates, separated
by a fluctuating background with average density ρc. We define kleft = O(

√
L)

as the position of the leftmost condensate. In the whole supercritical domain the
current is jc.

In the subcritical domain (ρleft < ρc) one has j < jc. Hence the influx into
the supercritical domain is less than the flux inside and as a result the domain
boundary moves towards the first condensate. When it reaches kleft the flux j from
the subcritical region to its left into the condensate becomes smaller than the flux
jc out of the condensate into the supercritical region. As a result the condensate
shrinks in size and finally disappears. Then the domain boundary moves on until it
hits the second condensate and the process of condensate annihilation sets in again.
Due to mass conservation the domain boundary thus moves into the supercritical
domain and “eats it up.” The shock separating the two domains is stable according
to the usual stability criterion since vleft > vs > vright. Notice that, as discussed
above, vright = 0 for ρright > ρc.

If ρleft = ρc, mass conservation results in a vanishing shock velocity. Micro-
scopically one expects a coarsening domain with background density ρc to the
right of the critical domain which has ρ = ρc, but no condensates. The microscopic
structure of the shock is not a jump in the background density, instead it originates
from the condensates in the supercritical domain. The microscopic position of the
shock is determined by the fluctuations of the position of the leftmost condensate.

Now we consider the space-reflected case where ρleft > ρc and ρright < ρc.
In this case the rightmost condensate in the supercritical region serves as a source
with constant flux jc that feeds into the subcritical domain with j < jc. Thus
one expects a constant density profile with ρ = ρc to the right of the rightmost
condensate up to the beginning of the subcritical domain. Hence effectively one
has a critical region (initially of a size of the order

√
L) connected to a macroscopic

subcritical domain. The domain boundary moves with collective velocity v∗
coll and

to its right a rarefaction wave develops according to the entropy solution of (1).
For v∗

coll = 0 the critical domain with ρc does not grow on the Eulerian time scale.
Therefore, for any domain boundary between subcritical and supercritical

segments, the coarse grained time evolution of the density profile can be computed
from (1) with the prescription

vchar =
{

∂ρ j for 0 ≤ ρ ≤ ρc

0 for ρ > ρc.
(8)

The characteristic velocity of the hydrodynamic equation and the collective veloc-
ity of the lattice gas coincide. Notice that for the TAZRP j = φ and therefore for
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ρ ≤ ρc the collective velocity is proportional to the inverse of the compressibility

κ = φ
∂ρ

∂φ
= 1

L
(〈 N 2 〉 − 〈 N 〉2) (9)

of the lattice gas in the grand-canonical ensemble.

4. SIMULATION RESULTS

In this section we present the results of Monte Carlo investigations which
confirm the preceding theoretical analysis. We simulated a model in which particles
hop to the right with rates

wn = 1 + b

n
. (10)

In Ref. 6 it was observed that, for this choice of wn , one sees condensation for
b > 2. The critical density ρc = 1/(b − 2) and the critical collective velocity is
given by Ref. 9

v∗
coll =

{
0 for 2 < b ≤ 3
(b−3)2(b−2)2

(b−1)2 for b > 3.
(11)

Note that the collective velocity vanishes for 2 < b ≤ 3 because the compressibil-
ity is infinite.

In Figs. 2 and 3 we show results for b = 2.5 and b = 4 respectively. In
both cases we simulated a periodic lattice starting from an initial condition of
ρk(0) = 2ρc for 0 < k < L/2 and ρk(0) = 0 elsewhere. The lefthand columns of
the figures contain snapshots of the coarse-grained density profile for a single
realization at increasing times whereas the righthand columns show an additional
average over stochastic histories. At the left boundary of the supercritical region
one clearly sees a right-moving shock front which “eats up” the condensation
regime. Figure 3 also clearly demonstrates the growth of a critical domain (ρ = ρc)
whose right boundary moves with a speed consistent with (11).

The ensemble average gives qualitatively the same picture as the coarse-
grained space average for a single realization, thus illustrating the self-averaging
nature of the process. For longer times, diffusive fluctuations smooth out the the
sharp domain boundaries when the profile is averaged over histories.

5. CONCLUSIONS

In summary, we have argued that the hydrodynamic description (1) of the
ZRP remains valid for supercritical densities even though locally the system is
not stationary under Eulerian scaling. In order to give a meaning to (1) we have
analyzed the coarsening process and found that the continuity equation has to be
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Fig. 2. Monte Carlo simulation results for TAZRP on a ring of size L = 2 × 105 where wn is given
by (10) with b = 2.5. The data points are coarse-grained density profiles, averaged over 5 × 103 sites,
at increasing times for a single realization (left column) and an average over (10) realizations (right
column). The initial profile (solid line) and final density (dotted) are shown for comparison.

supplemented by the results (7) and (8) for the current. We have demonstrated the
validity of the theory by Monte Carlo simulation of the TAZRP.

We expect similar analysis to be valid for the symmetric ZRP, under diffusive
scaling L → ∞ with k = x L , t ′ = t L2. In this case one gets the conservation
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Fig. 3. Same as Fig. 2 but for b = 4. From (f) we estimate the speed of movement for the righthand
boundary of the critical domain (i.e., the flat section with ρ ≈ ρc = 0.5) as 7500/16000 ≈ 0.47, to be
compared with the theoretical prediction, from (11), of 4/9 ≈ 0.44.

law ∂t ′ρ + ∂2
x φ(ρ) = 0. Inside a supercritical domain one has φ(ρ) = φc, corre-

sponding to a vanishing collective diffusion coefficient. Adapting the considera-
tions of the coarsening process to this situation one arrives at a solution that is
analogous to the free boundary solution of the phase-segregation problem in the
low-temperature phase of higher dimensional lattice gases.(21)
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15. G. M. Schütz, Critical phenomena and universal dynamics in one-dimensional driven diffusive
systems with two species of particles. J. Phys. A.: Math. Gen 36:R339–R379 (2003).
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